Bayesian Health
  • OUR PLATFORM
  • WHY BAYESIAN
  • ABOUT
  • CAREERS
  • INSIGHTS
  • CONTACT
  • Menu Menu
  • HOME
  • OUR PLATFORM
  • WHY BAYESIAN
  • ABOUT
  • CAREERS
  • INSIGHTS
  • CONTACT

Understanding how Bayesian’s machine learning models achieve high sensitivity and precision

Research

Comparison of Automated Sepsis Identification Methods and Electronic Health Record–based Sepsis Phenotyping: Improving Case Identification Accuracy by Accounting for Confounding Comorbid Conditions

In order to train high-quality machine learning models, it is essential to be able to determine which samples in the training dataset did (and did not) experience the targeted outcome of interest. Accurate identification of positives and negatives (referred to as “phenotyping”) is particularly challenging in healthcare because there are many confounding data points that can require clinician judgement to interpret, and clinical review is impractical for large-scale datasets. In sepsis, a common method to identify sepsis cases in retrospective datasets is the presence of ICD billing codes. Although billing codes have high precision (low false positive rate), they suffer from low sensitivity (miss many positive cases) and cannot be used to determine sepsis onset time. This study published in Critical Care Explorations describes a new method for sepsis phenotyping that outperforms other automated tools because it accounts for comorbidities that confound other automated tools.

Rigorous definition of targets is one of many strategies Bayesian Health uses to develop best-in-class machine learning models that achieve high sensitivity (80-95%) with 300%-700%+ better precision than many other solutions.

Read the full research paper here.

https://www.bayesianhealth.com/wp-content/uploads/2022/12/BH-Press-posts-R2-07.png 720 1280 integritive https://www.bayesianhealth.com/wp-content/uploads/2023/01/Bayesian-Health-logo-2x-color.png integritive2021-02-03 15:09:152023-01-12 14:04:58Understanding how Bayesian’s machine learning models achieve high sensitivity and precision

Recent Posts

  • Bio-IT World: AI in Healthcare: How To Assess What Works April 18, 2025
  • Elon Musk asked People to Upload Their Health Data. X Users Obliged November 8, 2024
  • AI challenges: a hot-button topic at Digital Health Summit October 30, 2024
  • Time Best Inventions Award 2024 – AI-Powered Pressure Ulcer Prevention October 30, 2024
  • Where Cleveland Clinic is piloting AI August 12, 2024
Let’s Talk

CONTACT US

General Email

[email protected]

Careers

[email protected]

  • OUR PLATFORM
  • WHY BAYESIAN
  • ABOUT
  • CAREERS
  • INSIGHTS
  • CONTACT

Stay up to date on the latest in machine learning and healthcare

© 2025 Bayesian Health - New York, NY
  • Link to X
  • Link to LinkedIn
  • Privacy Policy
Scroll to top Scroll to top Scroll to top